Copied to
clipboard

G = C24.315C23order 128 = 27

155th non-split extension by C24 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.315C23, C23.427C24, C22.2192+ 1+4, C22.1672- 1+4, C42:4C4:21C2, C23:Q8.8C2, (C2xC42).56C22, (C22xC4).89C23, C23.149(C4oD4), (C23xC4).110C22, C23.8Q8.27C2, C23.84C23:4C2, C23.11D4.15C2, C23.34D4.18C2, (C22xQ8).126C22, C23.83C23:33C2, C23.63C23:79C2, C23.67C23:56C2, C24.C22.27C2, C2.41(C22.45C24), C2.C42.174C22, C2.32(C22.50C24), C2.70(C23.36C23), C2.54(C22.46C24), C2.40(C22.36C24), (C4xC22:C4).59C2, (C2xC4).523(C4oD4), (C2xC4:C4).289C22, C22.304(C2xC4oD4), (C2xC22:C4).167C22, SmallGroup(128,1259)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C24.315C23
C1C2C22C23C22xC4C23xC4C4xC22:C4 — C24.315C23
C1C23 — C24.315C23
C1C23 — C24.315C23
C1C23 — C24.315C23

Generators and relations for C24.315C23
 G = < a,b,c,d,e,f,g | a2=b2=c2=f2=1, d2=ca=ac, e2=ba=ab, g2=b, ede-1=gdg-1=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Subgroups: 388 in 210 conjugacy classes, 92 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2xC4, C2xC4, Q8, C23, C23, C23, C42, C22:C4, C4:C4, C22xC4, C22xC4, C2xQ8, C24, C2.C42, C2xC42, C2xC22:C4, C2xC4:C4, C23xC4, C22xQ8, C42:4C4, C4xC22:C4, C23.34D4, C23.8Q8, C23.63C23, C24.C22, C23.67C23, C23:Q8, C23.11D4, C23.83C23, C23.84C23, C24.315C23
Quotients: C1, C2, C22, C23, C4oD4, C24, C2xC4oD4, 2+ 1+4, 2- 1+4, C23.36C23, C22.36C24, C22.45C24, C22.46C24, C22.50C24, C24.315C23

Smallest permutation representation of C24.315C23
On 64 points
Generators in S64
(1 10)(2 11)(3 12)(4 9)(5 37)(6 38)(7 39)(8 40)(13 52)(14 49)(15 50)(16 51)(17 46)(18 47)(19 48)(20 45)(21 43)(22 44)(23 41)(24 42)(25 54)(26 55)(27 56)(28 53)(29 60)(30 57)(31 58)(32 59)(33 64)(34 61)(35 62)(36 63)
(1 26)(2 27)(3 28)(4 25)(5 23)(6 24)(7 21)(8 22)(9 54)(10 55)(11 56)(12 53)(13 60)(14 57)(15 58)(16 59)(17 62)(18 63)(19 64)(20 61)(29 52)(30 49)(31 50)(32 51)(33 48)(34 45)(35 46)(36 47)(37 41)(38 42)(39 43)(40 44)
(1 12)(2 9)(3 10)(4 11)(5 39)(6 40)(7 37)(8 38)(13 50)(14 51)(15 52)(16 49)(17 48)(18 45)(19 46)(20 47)(21 41)(22 42)(23 43)(24 44)(25 56)(26 53)(27 54)(28 55)(29 58)(30 59)(31 60)(32 57)(33 62)(34 63)(35 64)(36 61)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 63 55 47)(2 33 56 19)(3 61 53 45)(4 35 54 17)(5 58 41 50)(6 32 42 16)(7 60 43 52)(8 30 44 14)(9 62 25 46)(10 36 26 18)(11 64 27 48)(12 34 28 20)(13 39 29 21)(15 37 31 23)(22 49 40 57)(24 51 38 59)
(2 27)(4 25)(5 39)(6 44)(7 37)(8 42)(9 54)(11 56)(14 57)(16 59)(17 33)(18 45)(19 35)(20 47)(21 41)(22 38)(23 43)(24 40)(30 49)(32 51)(34 63)(36 61)(46 64)(48 62)
(1 31 26 50)(2 59 27 16)(3 29 28 52)(4 57 25 14)(5 63 23 18)(6 33 24 48)(7 61 21 20)(8 35 22 46)(9 30 54 49)(10 58 55 15)(11 32 56 51)(12 60 53 13)(17 40 62 44)(19 38 64 42)(34 43 45 39)(36 41 47 37)

G:=sub<Sym(64)| (1,10)(2,11)(3,12)(4,9)(5,37)(6,38)(7,39)(8,40)(13,52)(14,49)(15,50)(16,51)(17,46)(18,47)(19,48)(20,45)(21,43)(22,44)(23,41)(24,42)(25,54)(26,55)(27,56)(28,53)(29,60)(30,57)(31,58)(32,59)(33,64)(34,61)(35,62)(36,63), (1,26)(2,27)(3,28)(4,25)(5,23)(6,24)(7,21)(8,22)(9,54)(10,55)(11,56)(12,53)(13,60)(14,57)(15,58)(16,59)(17,62)(18,63)(19,64)(20,61)(29,52)(30,49)(31,50)(32,51)(33,48)(34,45)(35,46)(36,47)(37,41)(38,42)(39,43)(40,44), (1,12)(2,9)(3,10)(4,11)(5,39)(6,40)(7,37)(8,38)(13,50)(14,51)(15,52)(16,49)(17,48)(18,45)(19,46)(20,47)(21,41)(22,42)(23,43)(24,44)(25,56)(26,53)(27,54)(28,55)(29,58)(30,59)(31,60)(32,57)(33,62)(34,63)(35,64)(36,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,63,55,47)(2,33,56,19)(3,61,53,45)(4,35,54,17)(5,58,41,50)(6,32,42,16)(7,60,43,52)(8,30,44,14)(9,62,25,46)(10,36,26,18)(11,64,27,48)(12,34,28,20)(13,39,29,21)(15,37,31,23)(22,49,40,57)(24,51,38,59), (2,27)(4,25)(5,39)(6,44)(7,37)(8,42)(9,54)(11,56)(14,57)(16,59)(17,33)(18,45)(19,35)(20,47)(21,41)(22,38)(23,43)(24,40)(30,49)(32,51)(34,63)(36,61)(46,64)(48,62), (1,31,26,50)(2,59,27,16)(3,29,28,52)(4,57,25,14)(5,63,23,18)(6,33,24,48)(7,61,21,20)(8,35,22,46)(9,30,54,49)(10,58,55,15)(11,32,56,51)(12,60,53,13)(17,40,62,44)(19,38,64,42)(34,43,45,39)(36,41,47,37)>;

G:=Group( (1,10)(2,11)(3,12)(4,9)(5,37)(6,38)(7,39)(8,40)(13,52)(14,49)(15,50)(16,51)(17,46)(18,47)(19,48)(20,45)(21,43)(22,44)(23,41)(24,42)(25,54)(26,55)(27,56)(28,53)(29,60)(30,57)(31,58)(32,59)(33,64)(34,61)(35,62)(36,63), (1,26)(2,27)(3,28)(4,25)(5,23)(6,24)(7,21)(8,22)(9,54)(10,55)(11,56)(12,53)(13,60)(14,57)(15,58)(16,59)(17,62)(18,63)(19,64)(20,61)(29,52)(30,49)(31,50)(32,51)(33,48)(34,45)(35,46)(36,47)(37,41)(38,42)(39,43)(40,44), (1,12)(2,9)(3,10)(4,11)(5,39)(6,40)(7,37)(8,38)(13,50)(14,51)(15,52)(16,49)(17,48)(18,45)(19,46)(20,47)(21,41)(22,42)(23,43)(24,44)(25,56)(26,53)(27,54)(28,55)(29,58)(30,59)(31,60)(32,57)(33,62)(34,63)(35,64)(36,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,63,55,47)(2,33,56,19)(3,61,53,45)(4,35,54,17)(5,58,41,50)(6,32,42,16)(7,60,43,52)(8,30,44,14)(9,62,25,46)(10,36,26,18)(11,64,27,48)(12,34,28,20)(13,39,29,21)(15,37,31,23)(22,49,40,57)(24,51,38,59), (2,27)(4,25)(5,39)(6,44)(7,37)(8,42)(9,54)(11,56)(14,57)(16,59)(17,33)(18,45)(19,35)(20,47)(21,41)(22,38)(23,43)(24,40)(30,49)(32,51)(34,63)(36,61)(46,64)(48,62), (1,31,26,50)(2,59,27,16)(3,29,28,52)(4,57,25,14)(5,63,23,18)(6,33,24,48)(7,61,21,20)(8,35,22,46)(9,30,54,49)(10,58,55,15)(11,32,56,51)(12,60,53,13)(17,40,62,44)(19,38,64,42)(34,43,45,39)(36,41,47,37) );

G=PermutationGroup([[(1,10),(2,11),(3,12),(4,9),(5,37),(6,38),(7,39),(8,40),(13,52),(14,49),(15,50),(16,51),(17,46),(18,47),(19,48),(20,45),(21,43),(22,44),(23,41),(24,42),(25,54),(26,55),(27,56),(28,53),(29,60),(30,57),(31,58),(32,59),(33,64),(34,61),(35,62),(36,63)], [(1,26),(2,27),(3,28),(4,25),(5,23),(6,24),(7,21),(8,22),(9,54),(10,55),(11,56),(12,53),(13,60),(14,57),(15,58),(16,59),(17,62),(18,63),(19,64),(20,61),(29,52),(30,49),(31,50),(32,51),(33,48),(34,45),(35,46),(36,47),(37,41),(38,42),(39,43),(40,44)], [(1,12),(2,9),(3,10),(4,11),(5,39),(6,40),(7,37),(8,38),(13,50),(14,51),(15,52),(16,49),(17,48),(18,45),(19,46),(20,47),(21,41),(22,42),(23,43),(24,44),(25,56),(26,53),(27,54),(28,55),(29,58),(30,59),(31,60),(32,57),(33,62),(34,63),(35,64),(36,61)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,63,55,47),(2,33,56,19),(3,61,53,45),(4,35,54,17),(5,58,41,50),(6,32,42,16),(7,60,43,52),(8,30,44,14),(9,62,25,46),(10,36,26,18),(11,64,27,48),(12,34,28,20),(13,39,29,21),(15,37,31,23),(22,49,40,57),(24,51,38,59)], [(2,27),(4,25),(5,39),(6,44),(7,37),(8,42),(9,54),(11,56),(14,57),(16,59),(17,33),(18,45),(19,35),(20,47),(21,41),(22,38),(23,43),(24,40),(30,49),(32,51),(34,63),(36,61),(46,64),(48,62)], [(1,31,26,50),(2,59,27,16),(3,29,28,52),(4,57,25,14),(5,63,23,18),(6,33,24,48),(7,61,21,20),(8,35,22,46),(9,30,54,49),(10,58,55,15),(11,32,56,51),(12,60,53,13),(17,40,62,44),(19,38,64,42),(34,43,45,39),(36,41,47,37)]])

38 conjugacy classes

class 1 2A···2G2H2I4A···4H4I···4X4Y4Z4AA4AB
order12···2224···44···44444
size11···1442···24···48888

38 irreducible representations

dim1111111111112244
type+++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2C4oD4C4oD42+ 1+42- 1+4
kernelC24.315C23C42:4C4C4xC22:C4C23.34D4C23.8Q8C23.63C23C24.C22C23.67C23C23:Q8C23.11D4C23.83C23C23.84C23C2xC4C23C22C22
# reps11111322111116411

Matrix representation of C24.315C23 in GL6(F5)

100000
010000
001000
000100
000040
000004
,
400000
040000
001000
000100
000040
000004
,
400000
040000
004000
000400
000010
000001
,
010000
400000
003000
000300
000001
000040
,
010000
400000
000100
001000
000010
000004
,
100000
040000
001000
000400
000010
000004
,
300000
030000
004000
000400
000020
000003

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,4,0,0,0,0,1,0],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,2,0,0,0,0,0,0,3] >;

C24.315C23 in GAP, Magma, Sage, TeX

C_2^4._{315}C_2^3
% in TeX

G:=Group("C2^4.315C2^3");
// GroupNames label

G:=SmallGroup(128,1259);
// by ID

G=gap.SmallGroup(128,1259);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,560,253,344,758,723,675,136]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=1,d^2=c*a=a*c,e^2=b*a=a*b,g^2=b,e*d*e^-1=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<